数学系Seminar第1467期 非局部扩散的自适应有限元方法

创建时间:  2017/06/02  龚惠英   浏览次数:   返回

报告主题:非局部扩散的自适应有限元方法
报告人:赵旭鹰  助理研究员  (中国科学院数学与系统科学研究院)
报告时间:2017年 6月2日(周五)15:30
报告地点:校本部G507
邀请人:李常品
主办部门:37000cm威尼斯数学系  
报告摘要:In this talk, an adaptive finite element algorithm for the numerical solution of a class of nonlocal models which correspond to nonlocal diffusion equations and linear scalar peridynamic models with certain nonintegrable kernel functions. The convergence of the adaptive finite element algorithm is rigorously derived with the help of several basic ingredients, such as the upper bound of the estimator, the estimator reduction, and the orthogonality property. We also consider how the results are affected by the horizon parameter δ which characterizes the range of nonlocality. Numerical experiments are performed to verify our theoretical findings.

欢迎教师、学生参加 !

上一条:数学系Seminar第1468期 几何分析中的特殊参数系与应用

下一条:物理学科Seminar第356讲 如何自然地破缺粒子物理中的弱-电对称性


数学系Seminar第1467期 非局部扩散的自适应有限元方法

创建时间:  2017/06/02  龚惠英   浏览次数:   返回

报告主题:非局部扩散的自适应有限元方法
报告人:赵旭鹰  助理研究员  (中国科学院数学与系统科学研究院)
报告时间:2017年 6月2日(周五)15:30
报告地点:校本部G507
邀请人:李常品
主办部门:37000cm威尼斯数学系  
报告摘要:In this talk, an adaptive finite element algorithm for the numerical solution of a class of nonlocal models which correspond to nonlocal diffusion equations and linear scalar peridynamic models with certain nonintegrable kernel functions. The convergence of the adaptive finite element algorithm is rigorously derived with the help of several basic ingredients, such as the upper bound of the estimator, the estimator reduction, and the orthogonality property. We also consider how the results are affected by the horizon parameter δ which characterizes the range of nonlocality. Numerical experiments are performed to verify our theoretical findings.

欢迎教师、学生参加 !

上一条:数学系Seminar第1468期 几何分析中的特殊参数系与应用

下一条:物理学科Seminar第356讲 如何自然地破缺粒子物理中的弱-电对称性