报告主题:椭圆方程基于P1元的中心差分方法的H^1超收敛
报告人:何银年 教授 (西安交通大学)
报告时间:2017年 10月9日(周一)10:00
报告地点:校本部G507
邀请人:李常品
主办部门:37000cm威尼斯数学系
报告摘要: In this paper, the coefficient matrixes of the center finite difference (CFD) method based on P1-element on the non-uniform mesh for solving the elliptic equation is reduced and the H1-stability and convergence of the CFD solution uh is provided. Next, the H1-super-convergence of u_h to I_hu is obtained under the case of the almost-uniform mesh. Based on the H^1-super-convergence of u_h to I_hu, the optimal L^2-error estimate of the numerical solution u_h and the H^1-super-convergence error estimate of the interpolation solution I^2_{2h}u_h are derived. Finally, some numerical tests are made to show the analytical results of the CFD method.
欢迎教师、学生参加 !